Button to scroll to the top of the page.

News

From the College of Natural Sciences
Learning Expands the Brain’s Capacity to Store Information

Learning Expands the Brain’s Capacity to Store Information

Kristen Harris and her team used an electron microscope to make 3D images of brain structures like this one to understand how learning alters the structures. They discovered that learning causes some synapses (red) to grow and others to shrink, leading to an increase in their capacity to store information. In this image, axons (green) carrying signals from multiple brain cells connect via synapses to the shaft-like input of a single brain cell, called a dendrite (yellow). Credit: Univ. of Texas at Austin.

The act of learning causes connections between brain cells, called synapses, to expand their capacity to store information, according to a new discovery from neuroscientists at The University of Texas at Austin, the Salk Institute for Biological Sciences and The University of Otago in New Zealand.

Neuroscientists Join Virtual Mega-laboratory to Probe the Brain’s Deepest Secrets

Neuroscientists Join Virtual Mega-laboratory to Probe the Brain’s Deepest Secrets

To understand how billions of neurons work together to guide decision-making in a single brain, twenty-one laboratories will join forces under the umbrella of the newly-formed International Brain Laboratory (IBL) to conduct a unique joint experiment.

Tags:
Neuroscientist Receives Grant to Advance Understanding of Brain Structure

Neuroscientist Receives Grant to Advance Understanding of Brain Structure

The National Science Foundation (NSF) has awarded Kristen Harris, a professor in the Department of Neuroscience at The University of Texas at Austin, a $9 million grant to explore the brain in microscopic detail and understand the cell biology of the nervous system. Harris plans to image and map synapses, the tiny points of contact between neurons throughout the brain, in detail and to model synapse function and share the data publicly for use by colleagues throughout the world.

Brain image from an electron micrograph through a single section plane illustrating spiny dendrites (yellow), nonspiny dendrites (orange), excitatory axons (green), excitatory synapses (red), astroglia (light blue), microglia (dark brown). Image credit: Kristen Harris
Unlocking the Mind's Mysteries

Unlocking the Mind's Mysteries

It's been called the most complicated object in the known universe. But, as UT scientists are learning, the human brain offers five important clues for understanding its wonders.

Keeps Us on Our Toes (Audio)

Keeps Us on Our Toes (Audio)

Worried that smart robots are taking over the world? You'll be relieved to know they still have a long way to go. That is unless you're an artificial intelligence researcher like Peter Stone. One big challenge facing robots that walk and run is that they fall over a lot.

Taillefumier Awarded Sloan Fellowship

Taillefumier Awarded Sloan Fellowship

A faculty member at The University of Texas at Austin whose research combines applied mathematics and theoretical neuroscience has been awarded a Sloan Research Fellowship for 2017.

UT Austin Leads $29 Million Alcoholism Treatment Consortium

UT Austin Leads $29 Million Alcoholism Treatment Consortium

The National Institutes of Health has awarded an international consortium seeking better pharmaceutical treatments for alcoholism a five-year grant totaling $29 million. The administrative headquarters and several of the projects will be at The University of Texas at Austin, which will receive $8.5 million of the total.

Resetting the Alcoholic Brain (Audio)

Resetting the Alcoholic Brain (Audio)

Adron Harris, director of the Waggoner Center for Alcoho and Addiction Research, and his team mapped the differences in gene expression between an alcoholic's brain and a non-alcoholic's brain. They found that, as a person becomes dependent on alcohol, thousands of genes in their brains are turned up or down, like a dimmer switch on a lightbulb, compared to the same genes in a healthy person's brain.

UT Austin Researchers Map Neurological Process of Learning, Deciding

UT Austin Researchers Map Neurological Process of Learning, Deciding

Scientists at The University of Texas at Austin can now map what happens neurologically when new information influences a person to change his or her mind, a finding that offers more insight into the mechanics of learning.

Neuroscientist Weighs How Realistic Bourne Character's Memory Loss Is

Neuroscientist Weighs How Realistic Bourne Character's Memory Loss Is

This week, Matt Damon returns to the big screen as Jason Bourne, a secret agent who has forgotten his entire life and is piecing it back together while confronting political and economic conflicts. We wondered how realistically the series depicts brain science.

Research Sheds Light on Challenges of Interpreting Brain Activity

Research Sheds Light on Challenges of Interpreting Brain Activity

Correlation doesn't necessarily mean causation. It's a warning that echoes throughout the halls of science, but is not always heeded. A new study in the journal Nature by associate professor Alex Huk and graduate students Leor Katz and Jacob Yates provides a perfect case study.

Serotonin Regulates the Sensitivity of Brain Cells Involved in Hearing

Serotonin Regulates the Sensitivity of Brain Cells Involved in Hearing

You may have heard of serotonin, a chemical found throughout the brain that regulates a host of mental states such as mood, appetite and alertness. When we have enough of it, we have an overall sense of wellbeing and happiness. When we're running low on it, we can experience depression.

Tags:
Scientists Estimate Memory Capacity Based on Sizes of Brain Synapses

Scientists Estimate Memory Capacity Based on Sizes of Brain Synapses

Neuroscientists from The University of Texas at Austin and the Salk Institute have discovered that connections between brain cells, called synapses, can be grouped into more discrete sizes than was previously thought, and these discrete sizes are thought to predict different functional states.

Scientists Discover How We Play Memories in Fast Forward

Scientists Discover How We Play Memories in Fast Forward

Scientists at The University of Texas at Austin have discovered a mechanism that may explain how the brain can recall nearly all of what happened on a recent afternoon — or make a thorough plan for how to spend an upcoming afternoon — in a fraction of the time it takes to live out the experience. The breakthrough in understanding a previously unknown function in the brain has implications for research into schizophrenia, autism spectrum disorders, Alzheimer's disease and other disorders where real experiences and ones that exist only in the mind can become distorted.

When we think about past or future events, we use a special brain wave frequency that allows us to play them in fast forward, although at a lower resolution. Illustration by Juliette Pepperell
UT Austin Receives $4M to Develop Techniques for Brain Imaging and Manipulation

UT Austin Receives $4M to Develop Techniques for Brain Imaging and Manipulation

Researchers at The University of Texas at Austin will receive three grants totaling $4 million to develop techniques for imaging and manipulating the activity of neurons in the brain, research that will help scientists explore the mechanisms of addiction, obesity, fear and many other brain states and disorders. The funding, provided by the National Institutes of Health, is part of the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative launched last year by President Barack Obama.